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ABSTRACT

Communication in multi-processor systems-on-chip requires
guaranteed throughput and latency. If the network is un-
aware of ongoing communication patterns, applications may
not receive their necessary bandwidth or may suffer high
network latencies. Many techniques have been proposed to
provide quality-of-service (QoS) in the network by regulat-
ing network traffic; however, as network sizes have increased,
the complexity of these techniques has grown as well, par-
ticularly in the case of multi-hop networks.

In this paper, we propose an efficient QoS implementa-
tion for a single-stage, high-radix switch, which is readily
scalable to 64 nodes. In addition to best effort and guar-
anteed throughput services, we implement a guaranteed la-
tency traffic class with a latency bound. Our implementa-
tion allows systems significantly larger than most current
multi-core chips to be implemented without the need for
difficult and complex multi-hop QoS.
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C.1.2 [Processor Architectures]: Multiprocessors—In-
terconnection architectures
General Terms

Algorithms, Design
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1. INTRODUCTION

A system-on-chip (SoC) with real-time deadlines (e.g. a
base station or an embedded system) consists of workloads
that have both bandwidth requirements and latency con-
straints. The on-chip network in an SoC is shared among
many nodes (cores/accelerators/IP blocks). Networks that
are application-unaware will treat all messages equally even
though some applications may require more bandwidth or
lower latency for their messages. Quality-of-service (QoS)
techniques can be added to networks to make them more
application-aware. QoS techniques regulate access to a shared
node, such as the memory controller, so that an application
can meet its needs without degrading the performance of
other applications.

Typically, QoS is implemented by controlling a variety of
behaviors such as the injection time of packets into the net-
work, total number of packets injected, and specific use of
virtual channels and physical links [3,6,7,8,13,18,19]. As
the number of nodes in systems continue to grow, a scal-
able interconnect becomes essential. Most recent work has
focused on multi-hop network-on-chips (NoCs) to accom-
modate this growing number of nodes. Implementing QoS
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techniques in these NoCs, particularly to provide differenti-
ated bandwidth and low latency services, is difficult. Some
of these algorithms need information about traffic flows to
be stored at each router in a multi-hop network, introducing
large amounts of buffering.

Recently, the Swizzle Switch [15,16], a high-radix cross-
bar that can provide a point-to-point interconnect fabric for
many nodes, was introduced. While traditional crossbars
cannot scale to higher radices due to power and area com-
plexities, the Swizzle Switch was demonstrated to scale to a
radix of 64 in 32nm technology at 1.5GHz [16]. This sug-
gests that it can be used to build high-radix, single-crossbar
networks. We will show that it is possible to implement QoS
techniques within the Swizzle Switch with low complexity.

We augment the Swizzle Switch by implementing QoS
with three traffic classes: Best-Effort (BE) class, Guaran-
teed Bandwidth (GB) class, and Guaranteed Latency (GL)
class, in that order of increasing priority. The BE class is
the default class in Swizzle Switch with least recently granted
(LRG) arbitration [15]. To maintain the bandwidth require-
ments of the GB class, we derive a mechanism from Vir-
tual Clock [19], a well-known QoS algorithm designed for
packet switching networks. We efficiently integrate the Vir-
tual Clock algorithm into the Swizzle Switch crossbar fabric
and perform switch arbitration in a single clock cycle. An
undesirable characteristic of Virtual Clock is that it couples
the network delay of a flow with the bandwidth rate reserved
by that flow. Packets from a flow with a small reserved rate
have high network delay on average. Our interpretation of
the Virtual Clock algorithm in the Swizzle Switch improves
upon the original Virtual Clock algorithm by providing low
delays to small-bandwidth flows.” Finally, our GL class
is envisioned for sending infrequent, time-critical messages,
such as interrupts, that need to quickly pass through the
network. It is given the highest priority in the network, but
we put safeguards in place to prevent its abuse. We calculate
an upper bound in latency for GL class packets.

2. MOTIVATION AND BACKGROUND
2.1 Single-Crossbar Networks

A single-crossbar network is a single centralized crossbar
as the on-chip interconnect. Large crossbars were consid-
ered infeasible because their area and power grow quadrat-
ically with radix. However, the recent Swizzle Switch has
shown that crossbars can be designed more efficiently with
the help of advanced circuit technology [15]. The Swizzle
Switch crossbar reuses the wires of the output data bus to
also perform switch arbitration, hence saving both area and
energy. Single-crossbar networks provides benefits such as
reduced network latency, dedicated input and output chan-
nels for each core, and uniform cache accesses. Furthermore,
adding support for QoS, which involves adding storage to
track flow history and global knowledge of bandwidth ca-
pacity, can be more easily achieved in a single-switch than
in a multi-hop network.

YA flow is a stream of packets that traverse the same route
from a source to a destination.



2.2 Quality-of-Service Algorithms

Several QoS approaches for networks have been proposed.
Static approaches such as Weighted Round Robin (WRR)
and Deficit Weighted Round Robin (DWRR) can provide
strict bandwidth guarantees [17]. However, WRR and DWRR
lead to network underutilization as they do not distribute
leftover bandwidth equally to flows with excess data or to
best-effort flows. Fair Queuing (FQ) and Weighted Fair
Queuing (WFQ) emulate bit-by-bit round robin (BR) ser-
vice [2,5,12]. They compute finish times for packets, which
is the time that the packet would have been serviced had
the server been doing BR. However, computing finish times
in these schemes have O(N) complexity. Globally Synchro-
nized Frames (GSF) [8] is a frame-based approach that con-
trols the number of packets injected into the network at the
source. It requires a global barrier network across all nodes,
which adds overhead and can be slow.

The QoS mechanism we chose to implement was inspired
by the Virtual Clock algorithm. Virtual Clock emulates time
division multiplexing (TDM). In a true TDM system, pack-
ets are serviced only in the time slots allocated to the source.
If the source has no packets to send, that time slot is wasted
and results in link underutilization. Unlike TDM, Virtual
Clock makes efficient use of link capacity by redistributing
idle time slots to sources with excess demand.

A snippet of the Virtual Clock algorithm from [19] is
shown below. Each flow has its own virtual time space kept
in a VirtualClock. Transmitting one packet marks the pass-
ing of one virtual time step, Vtick, which is the average
arrival time between packets from a flow in real time clock
ticks. If the flow sends packets according to its average rate,
its VirtualClock should approximately equal the real time
clock. In the presence of multiple flows, the VirtualClocks
of all flows are multiplexed to emulate a TDM system. Pack-
ets are stamped with the VirtualClock value of their flows
at the time of their arrival and are transmitted according
to increasing time stamps. If one flow does not send any
packets for a while, its VirtualClock will fall behind. Then
with a sudden burst, that flow can starve other flows until
its VirtualClock value has caught up. To prevent flows from
building up priority this way, their VirtualClocks are set to
at least the real time clock, as shown in step 1 in the algo-
rithm below. Now, any burst of packets will be interleaved
with packets from other flows.

Original Virtual Clock Algorithm from [19]

e Upon receiving each packet from flow;,

1. auzVC <+ max(auxVC, real_time)
2. auxVC <« (auxVC + Vtick;)
3. stamp the packet with the auzV C value

e Transmit packets in the order of increasing stamp values.

Coupling of Bandwidth and Latency: A drawback of
the Virtual Clock algorithm is that it couples the reserved
rate of bandwidth to latency. Flows with high reserved rates
observe low average latency while flows with low reserved
rates observe high average latency. The reason is that flows
with high reserved rates have more packets to send; there-
fore, the switch must schedule these flows for data trans-
mission more frequently. This results in very low average
latency for packets. On the other hand, flows with low re-
served rates are scheduled less frequently, resulting in high
average latency for packets.

Previous work in the Swizzle Switch [14] had implemented
a 4-level message-based QoS arbitration scheme. Our imple-
mentation has three main differences from the 4-level QoS
implementation [14]. First, we allocate certain fractions of
bandwidth to each input and ensure that they receive at

least that much bandwidth. In the previous design inputs
could only assign a priority level to messages and could not
control how much bandwidth each priority level receives.
Second, the previous design used a fixed-priority QoS mech-
anism (highest level messages are prioritized first), which
could lead to starvation of messages in other levels. Third,
the previous design required two arbitration cycles, whereas
our entire arbitration (Virtual Clock arbitration + LRG ar-
bitration) is within a single cycle. This is one of the new
contributions of our work.

3. SWIZZLE SWITCH WITH QOS

In this work, we implement QoS in a single-crossbar net-
work by extending the Swizzle Switch architecture to sup-
port three different traffic classes. We briefly explain each
class and their priorities below.

Best-Effort (BE) class is applicable to flows that re-
quire neither guaranteed bandwidth nor guaranteed latency
services. This class has the lowest priority in the network.

Guaranteed Bandwidth (GB) class is applicable to
flows that require a guaranteed bandwidth from the net-
work but not a tight bound on network latency; therefore,
this traffic class has the second highest priority in the net-
work. Bandwidth guarantees are maintained using the Vir-
tual Clock algorithm.

Guaranteed Latency (GL) class is intended for time-
critical packets that need to quickly traverse the network,
such as interrupts or watchdog timers. The GL class is main-
tained by giving it the highest priority in the system. GL
packets are serviced before any GB packets and may cause
a disruption in GB services. To ensure that the GL class
does not completely deny service to the GB class, a small
fraction of bandwidth is reserved for it.

3.1 Swizzle Switch-Virtual Clock

The GB class is achieved by integrating the Virtual Clock
algorithm into the Swizzle Switch, henceforth referred to
as Swizzle Switch-Virtual Clock (SSVC). In a Swiz-
zle Switch, each crosspoint is configured to transmit packets
of one particular flow, (In;,Out,). We added the following
components to each crosspoint to support QoS:

A virtual clock counter (auzV C)

Virtual clock thermometer code register
Virtual clock increment value register (Vtick)
Replicated LRG arbitration logic

The virtual clock counter, auzV C, tracks the bandwidth
usage history of the flow and is incremented by Vtick each
time a packet is transmitted. During arbitration, auzVC
values of requesting inputs are compared. We modified the
switch arbitration circuitry to enable this comparison. The
modifications are explained in detail below and also in Fig-
ure 1 and Figure 2. In Figure 1, five inputs of an 8-input
switch is shown to be requesting some output M. To deter-
mine the winner, each input’s auxzV C counters are used as
the priority values in an inhibit-based arbitration.

Swizzle Switch’s Inhibit-Based Arbitration: The Swiz-

zle Switch employs an inhibit-based arbitration mechanism.
In the beginning of the arbitration cycle, a subset of the out-
put bus’ bitlines, which are repurposed to perform switch ar-
bitration, are pre-charged. During the arbitration, request-
ing inputs with higher priorities discharge the bitlines that
they have priority over to inhibit inputs of lower priorities.
At the end of the arbitration cycle, each input senses just
one wire (the wire in the column with a ‘x’ in Figure 1(c)).
If other inputs have a priority bit ‘1’ associated with this
wire, then the ‘x’ wire had been discharged and this input
loses arbitration. Only a single input will remain with a still
charged wire; that input had the highest priority amongst
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Figure 1: Example of a QoS-facilitated arbitration to some Output M. This example pertains to an 8-input switch
with 64-bit output channels. (a) Five inputs are requesting Output M. Each (InN,OutM) crosspoint contains a 12-bit auzVC
counter, from which three most significant bits are used to create a thermometer code bit vector. The circuit in (b) uses two
adjacent thermometer code bits to make discharge decisions for every lane (which, in this example, is a set of 8 bitlines). (c)
Discharge decisions are then mapped to the output channel’s bitlines for inhibit-based arbitration.

the requesting inputs and is the winner of the arbitration.
The priorities can be updated in different ways to imple-
ment different arbitration policies [14]. We use least recently
granted (LRG) arbitration in SSVC.

Thermometer Code Creation: Before auzVC values
of requesting inputs can be compared with inhibit-based ar-
bitration, they must be mapped to the output bus’ bitlines.
The auzV C counters (as seen in Figure 1(a)) are too large to
be directly mapped to a typical 64-bit or 128-bit data bus.
Therefore, we use some of the most significant bits of the
auxV C value and create a thermometer code vector. Ties
between identical thermometer codes are broken with LRG
arbitration. The use of LRG arbitration creates a restric-
tion on the size of the thermometer code vector because the
number of bitlines required for each LRG arbitration equals
the number of inputs. The thermometer code vector is up-
dated by shifting it up by 1 each time the most significant
bits of auzVC' change (Figure 2).

Modified Inhibit-Based Arbitration: The SSVC ar-
bitration has two major components: 1) inputs with the
smallest thermometer code bit vector must defeat all inputs
with larger thermometer code bit vectors because in Virtual
Clock the smaller the auxVC the higher the priority; and
2) ties between any inputs with the same thermometer code
bit vector must be resolved with LRG. To achieve both com-
ponents of the SSVC' arbitration in a single clock cycle, we
created the small circuit in Figure 1(b). This circuit uses
two adjacent thermometer code bits to determine discharge
decisions for every set of 8 bitlines (or lane®). For example,
to decide which bitlines to discharge in lane 4, the circuit
in 1(b) uses thermometer code bits T4 and T5. This circuit
is replicated for every lane, as can be seen in Figure 2. Fi-
nally, Figure 1(c) shows how these decisions are mapped to
the output channel’s bitlines. During the Swizzle Switch’s
inhibit-based arbitration, each input will discharge the bit-
line where a ‘1’ appears in 1(c). At the end of the arbitration,
a single input will remain with its bitline still charged and
that is the winner of the SSVC arbitration.

As for the example in Figure 1(c), In0 senses in lane 6
because the three most significant bits of its auzV C counter
is “110”. In0 will sense that wire 48 (the wire with ‘x’) has
been discharged by Inl, In2, In5, and In6 and will lose the
arbitration. Inl discharges wire 48 because it has higher
LRG priority. In2, In5, and In6 discharge wire 48 because

2A lane has exactly the number of bitlines required to per-
form LRG arbitration; usually equal to the number of in-
puts.

they get all ‘1’s from the discharge decision circuit as they
have a lower auzV C value (“100”). Similarly, In1 will sense
wire 49 and also lose to In2, In5, and In6. Between In2, In5,
and In6, LRG in lane 4 picks the final winner. In2 will win
because it senses wire 34, which is not discharged by any
other input.

The accompanying Figure 2 shows the circuitry for SSVC.
The most significant bits of the auxV C counter has two
purposes: 1) to determine the thermometer code bits and 2)
to select the wire to be sensed by the sense amp. The wires
being sensed can only be discharged by other inputs.

Shift Therm. Code Vector up when
significant bits of auxVC Counter change o

Thermometer Code Vector
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auxVC|Counter _____________ L e — L R A
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Decision
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Figure 2: Circuitry for the Inhibit-Based Arbitra-
tion at Crosspoint (In2,0utM). Only 8 wires are needed
for LRG arbitration in an 8 x 8 switch. Each set of 8 wires
constitutes a lane. The discharge decision for each bitline is
selected by feeding the thermometer code bits into the cir-
cuit in Figure 1(b). For In2, the sense amp can sense wires
2, 10, 18,...,58 in a 64-bit bus. The exact lane to sense is
determined by the auzV C value.

In2 Request

Gnt Line

Finite Counters and Real Time Clock: The auzVC
counter increases by Vtick each time a packet is transmitted.
To prevent the finite counters in hardware from saturating,
we modified step 1 of the original algorithm to be:

auzVC + max(auzV C,real_time) — real_time

Also, instead of subtracting real_time from each auzVC
at every packet transfer, we keep a separate real time clock
counter of the same granularity as the least significant bits of
auxVC. Once that counter saturates, we subtract 1 from the
most significant bits’ value and shift down all thermometer
codes by 1 position.



Improving Latency Fairness: We explored two more
ways of managing finite counters: halving and resetting.
Both methods provide latency fairness across bandwidth
allocations by somewhat decoupling latency from reserved
bandwidth rates. The halving method divides all auzVC
registers by 2 when any one of them saturate. The auzVC
register is shifted down by 1 position and the top half of the
thermometer code is copied to the bottom half and then re-
set. The reset method resets all auxV C registers to 0 when
any one of them saturate. All thermometer codes are also
reset to zero. After implementing these two methods, we ob-
served a further improvement in latency for flows with low
reserved rates.

3.2 Guaranteed Latency Class

The SSVC mechanism is used only by the GB traffic class
to enforce bandwidth usage of flows. It cannot be used for
the time-critical packets in the GL class because it couples
bandwidth and latency and provides very high latency to low
bandwidth flows. Therefore, we decouple bandwidth from
latency by giving the GL traffic class the highest priority in
the system regardless of its bandwidth usage. Its arbitration
takes place in a separate GL Lane, leaving one fewer lane
for the GB class. Figure 1(b) was modified to Figure 3 to
support the GL traffic class. First, all ongoing GB arbitra-
tion are made to lose. Second, LRG arbitration selects one
input if there are several inputs sending a GL packet. At
the input ports, GL class packets should be buffered sepa-
rately from GB class packets. Additional modifications to
the sense amp circuit will be required to correctly sense the

GL Lane.
| Figure 1(b)

47 1111111

InN GL

Request 1

7

7-bit Discharge Decision
for a Lane

Figure 3: Modified discharge decisions circuitry to
to support GL class arbitration. In the presence of
a GL request, all bitlines in GB class lanes will be
discharged.

3.3 Bandwidth Allocation To Traffic Classes

The BE class has no reserved bandwidth allocations and
packets are serviced when neither GB nor GL packets are
present. In the GB class, each individual input may re-
quest a fraction of the output channel’s bandwidth; there-
fore, there can be as many GB flows per output as there are
inputs. For the GL class, the output reserves a small frac-
tion of bandwidth for any GL packet injected from any input
to that output. Then, for each output channel, the sum of
bandwidth allocated to all GB flows and the GL class should
be less than or equal to the total bandwidth capacity of the
output channel.

3.4 Guaranteed Latency Bound

As mentioned in Section 3.3, the output reserves a small
fraction of bandwidth for any GL packet injected from any
input to that output. A drawback of this approach is that
multiple inputs may want to send GL packets, and because
the GL class’ bandwidth allocation is shared among all in-
puts, one input may take away from another’s ability to send
a GL packet within a reasonable network latency. Thus, our
GL class is only applicable to types of time-critical messages

that are very infrequent. Also, we only allocate a small frac-
tion of bandwidth as the GL class has absolute priority over
the GB class and may hinder the ability to maintain GB
services. The bandwidth usage of the GL class is tracked
by a counter similar to the auxVC counters of the GB class
and increments by a tick count proportional to the reserved
rate.

The following expression determines the maximum wait-
ing time, 7¢ 1, for a buffered GL packet at the switch.

TGL S lmaa: + NGL,O X (b+ b/lmzn) (1)

Imaz and lmin, are the maximum and minimum length of
a packet; Ngr,o is the number of inputs injecting into the
GL class to an output o; b is the buffer depth of GL class
buffers. The term l,q, accounts for the waiting time for
channel release from a packet already holding the the chan-
nel. The term (Ngr,o X b) accounts for the transmit latency
of buffered flits, and the term (Ngr,o X b/lmin) accounts for
the arbitration latency of each buffered GL packet.

In addition to knowing the worst case latency bound, it
is also helpful to quantify the burst size allowed for some
input requiring a latency bound for its packets. For example,
if only one input is injecting to GL class and it expects a
latency bound of 100 cycles, then it should not send more
than 50 1-flit packets in a burst. But if there are 8 inputs and
all of them expect a latency bound of 100 cycles, then each
should not send more than 12 1-flit packets in a burst. We
generalize this logic to two equations. First, we arrange all
Ngr,o inputs with GL packets to send in order from tightest
to loosest latency constraint {L1, La,...,Lnx }. The maximum
burst size in packets allowed for the input with the tightest
latency constraint L; is

Ll - lmam
(lmaz + 1) X NGL,O

Recursively, the maximum burst size in packets for the input
with the n'® tightest latency (n > 1) constraint is

Ln - Ln—l
(lmaz + ]-) X (NGL,D - n)

The flow with the L,, latency constraint can burst as many
flits as the flow with the L, _; latency constraint but has
to compete with the remaining Ngr,,, —n flows with higher
latency constraints.

4. RESULTS
4.1 Evaluation Methodology

We wrote a custom, cycle-accurate simulator for the Swiz-
zle Switch that modeled the SSVC mechanism in detail. To
verify the correctness of SSVC, we further modeled the be-
havior of each wire, multiplexer, and sense amp in a C++
program. We tested this program with all input combina-
tions of thermometer code vectors and valid LRG states.
The arbitration decision of the level model was compared
to the arbitration decision of a true (non-coarse grained)
auxV C value comparison to verify that each decision was
correct.

The Swizzle Switch has been fabricated and tested in sil-
icon [15] in 32nm industrial process. We have analyzed the
impact on area and delay of the Swizzle Switch before and
after adding the QoS logic. Wire delays were collected from
SPICE modeling.

4.2 [Evaluating Guaranteed Bandwidth

First, we demonstrate the ability of SSVC to adhere to
reserved rates with Figure 4. Each input port has reserved
a fraction of the output port’s total bandwidth. We pre-
allocated these fractions and pre-calculated each input flow’s

(2)

g1 =

3)

On =0p—1+



Vtick. Unlike the LRG policy, which distributes bandwidth
equally among inputs during congestion, the Virtual Clock
policy distributes the bandwidth according to the requested
rates, and guarantees that each input gets at least its re-
quested rate. We simulated 200 combinations of reserved
rates and a variety of packet sizes and verified that in each

case SSVC is able to give flows their requested rates. Through-

put loss from the Swizzle Switch’s arbitration cycle can be
mitigated by applying techniques such as Packet Chain-
ing [10] to multiple small packets headed to the same desti-
nation.

Accepted Throughput at Output (flits/input)  Max. Accepted
0.2 Thrpt at Output

=0.89 flits/cycle

0.111 Flows1,2,3,4,5,6,7,8
(@NoQos 0.1 | ¢
LRG Fa
A
0.0 Flow 1 (r = 0.4)
0.3
(b) Qos 0.2 Flow 2 (r=0.2)
Virtual Clock
0.1 | Flows 3, 4 (r=0.1)
ww. Flows5,6,7, 8 (r=0.05)
0.0 ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0

Injection Rate (flits/inputs/cycle)

Figure 4: Bandwidth received by flows without and
with QoS. (a) Without QoS, the switch performs LRG
arbitration among the inputs. During congestion all flows
receive an equal share of the available bandwidth. The max-
imum possible throughput is 0.89 flits/cycle because this ex-
periment uses 8-flit packet sizes. (b) With QoS, all inputs
get at least their reserved rate of bandwidth during con-
gestion. The reserved fractions, r, of all 8 inputs are 40%,
20%, 10%, 10%, 5%, 5%, 5%, and 5%. Details: 8 inputs, 1
output, 128-bit output channel, 8-flit packets, 16-flit buffers,
GB traffic only, 4 significant bits of auzV C used for SSVC
arbitration.

4.3 Improving Latency and Latency Fairness

Next we analyze the latency of GB packets with respect
to the reserved rate of their flows. Figure 5 shows the aver-
age latency experienced by packets given the percentage of
bandwidth allocated to a flow out of the output channel’s
total bandwidth capacity. The original Virtual Clock algo-
rithm tends to give low bandwidth flows (<10%) very high
latency. This is because flows with low reserved rates have
fewer packets to transmit; therefore they are scheduled less
frequently.

Our SSVC implementation greatly reduces the latency for
smaller allocations because the comparison of auxzV C values
is more coarse-grained. The LRG arbitration, which acts as
a tie-breaker for multiple flows with the same auxV C' value,
adds some fairness across the flows. However, the decrease
in latency for smaller allocations comes with a sacrifice: the
increase in latency for flows with larger allocations. We rea-
son that this increased latency might not affect performance
because nodes or applications which might need large alloca-
tions of bandwidth may have other built-in latency tolerance
techniques, such as memory level parallelism.

The two other methods we explored for managing finite
counters, halving or resetting the auxV C, further decreased
the latency for flows with very low allocations (< 5%), es-
pecially during bursty injection. Results are shown in Fig-
ure 5. The insight is that by halving or resetting auzV C, we

Average Latency (cycles/packet)
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Figure 5: The SSVC implementation improved the
packet latency for GB flows with low bandwidth al-
locations (<10%).

reduce the number of unique thermometer code values in ex-
istence, on average. During arbitration, contention between
flows with the same thermometer code value is resolved us-
ing LRG, which introduces more fairness. As can be seen in
the results, the reset to zero method has the least variance
in latency across bandwidth allocations. All three methods
were able to provide bandwidth to flows on average within
—2% of their reserved rates.

4.4 Scalability

The accuracy of the SSVC' technique increases with more
“lanes” of arbitration. To support all three classes, at least
three lanes are needed and each lane has to have as many
wires as the number of input channels. However, the number
of lanes are limited by the width of the output channel. The
maximum possible number of lanes given a radix can be
calculated by:

output bus width
radix

num lanes =

For a radix-8, radix-16 and radix-32 switch, a 128-bit bus is
sufficient. For a radix-64 switch, a 256-bit bus is required
to support three QoS classes. Our QoS technique, while not
scalable beyond 64 nodes, is sufficient to support applica-
tions in most modern SoC platforms. Scaling to more nodes
involve composing multiple switches, which makes the QoS
technique more complex. Crosspoints will have to be shared
by several flows, requiring more per-flow state storage. In
addition, composing multiple switches introduces conflicts in
buffers at the input port. It becomes increasingly difficult to
maintain separation between flows in buffers. However, the
connectivity of 64 nodes is more than reasonable for current
and near-term products.

4.5 Area and Delay

We calculated the storage overhead of SSVC for a cross-
point. Table 1 shows the storage overhead for a very large
64x64 switch with 512-bit channels is about 1MB. This is
the worst case storage overhead.

The switch arbitration logic in the Swizzle Switch is lo-
cated underneath the crosspoint on a separate metal layer.
Without QoS support, the arbitration logic fits within the
same area as the crosspoint width of a 128-bit channel. To
determine the impact on area by QoS logic, we calculated the
area consumed by major components of the Virtual Clock
logic such as the auxV C counters, the adder which incre-
ments auzV C by Vtick, and the multiplexer before the sense
amp that selects the lane to be sensed. We performed this
calculation for several configurations of switch sizes (8x8,



Table 1: SSVC storage requirements (in bytes) for
64x64 switch with 512-bit output buses.

Buffering/ | BE | 4 flits, 64 bytes/flit 256
Input GB | 4 flits/out, 64 outs, 16,384
64 bytes/flit

GL | 4 flits, 64 bytes/flit 256

Total buffering for all 64 inputs 1,056 K

Per-crosspoint auxVC(3+48 bits) 1.375

state Thermometer (8 bits) 1

Vtick (8 bits) 1

LRG (63 bits) 7.875

Total storage for 4096 crosspoints 45 K

Total switch storage (input port buffering | 1,101 K
+ crosspoint storage)

16x16 and 32x32) and bus widths (128-bit, 256-bits, and
512-bits). With the SSVC logic, the crosspoint area for the
128-bit channel increased by 2%, which is equivalent to the
area of a 131-bit channel. For 256-bit and 512-bit buses,
the crosspoint area is large enough to comfortably house the
SSVC logic without additional area overhead.

In addition, we calculated the impact on frequency. The
critical path is extended by the multiplexer before the sense
amp from Figure 2. The frequency slowdown is shown in
Table 2. The worst slowdown is 8.4% for the 256-bit channel,
8% 8 configuration.

Table 2:
SSvC.

Frequency (in GHz) with and without

Channel Width
128 256 512
Radix SS  SSVC 5SS  SSVC S5S  SSVC
8x8 4.17 3.95 | 3.47 3.18 | 2.52 2.35
16x16 | 3.44 3.15 | 2.50 2.35 | 1.62 1.55
32x32 | 2.45 2.30 | 1.60 1.54 | 0.94 0.92
64x64 - - | 0.93 0.93 | 0.51 0.51

S. RELATED WORK

In addition to the techniques we discussed in 2.2, there are
several previously proposed techniques that offer support for
GB and BE QoS classes. AEthereal [6] and Nostrum NoC [11]
both use TDM and circuit switching to provide guaranteed
bandwidth services. MANGO is a clockless NoC that pro-
vides GB using dedicated virtual channels [3]. A GB con-
nection is established between two points in the network by
reserving virtual channels along the path. LOFT combines
locally synchronized frames and flit-reservation, which uses
a look-ahead network to pre-schedule the data through each
router [13].

Some techniques also provided explicit GL services. Son-
icsMX [18] has both priority threads and bandwidth threads,
equivalent to our GL and GB classes, respectively. However,
SonicsMX does not provide guarantees such as maximum
network delay for its priority class. Credit-Controlled Static
Priority (CCSP) decouples latency from the allocated band-
width rate by using a scheduler that assigns a static priority
among requesters [1].

Other works, such as QNoC [4] and CoQoS [9] imple-
mented QoS management for multiple traffic classes based
on system requirements.

6. CONCLUSION

In this paper, we proposed a QoS implementation for a
single-stage, high-radix switch. We implemented three dif-
ferent traffic classes: Best-Effort (BE), Guaranteed Band-
width (GB), and Guaranteed Latency (GL). We explained
in detail the new SSVC circuit design for GB class that com-
pares multiple priority values in a single clock cycle. The
SSVC mechanism adds no more than 2% area-overhead to

the Swizzle Switch crosspoint and incurs a frequency slow-
down of at most 8.4%. Furthermore, our GL traffic class
decouples network delay from reserved rate of bandwidth
and offers low network latency to critical messages. We pro-
vided equations that accurately predict the maximum la-
tency bound for GL class packets.
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