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Abstract
The computation for today’s intelligent personal assistants
such as Apple Siri, Google Now, and Microsoft Cortana, is
performed in the cloud. This cloud-only approach requires
significant amounts of data to be sent to the cloud over the
wireless network and puts significant computational pres-
sure on the datacenter. However, as the computational re-
sources in mobile devices become more powerful and en-
ergy efficient, questions arise as to whether this cloud-only
processing is desirable moving forward, and what are the
implications of pushing some or all of this compute to the
mobile devices on the edge.

In this paper, we examine the status quo approach of
cloud-only processing and investigate computation partition-
ing strategies that effectively leverage both the cycles in the
cloud and on the mobile device to achieve low latency, low
energy consumption, and high datacenter throughput for this
class of intelligent applications. Our study uses 8 intelligent
applications spanning computer vision, speech, and natural
language domains, all employing state-of-the-art Deep Neu-
ral Networks (DNNs) as the core machine learning tech-
nique. We find that given the characteristics of DNN algo-
rithms, a fine-grained, layer-level computation partitioning
strategy based on the data and computation variations of
each layer within a DNN has significant latency and energy
advantages over the status quo approach.

Using this insight, we design Neurosurgeon, a light-
weight scheduler to automatically partition DNN compu-
tation between mobile devices and datacenters at the gran-
ularity of neural network layers. Neurosurgeon does not
require per-application profiling. It adapts to various DNN
architectures, hardware platforms, wireless networks, and
server load levels, intelligently partitioning computation for
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best latency or best mobile energy. We evaluate Neurosur-
geon on a state-of-the-art mobile development platform and
show that it improves end-to-end latency by 3.1× on aver-
age and up to 40.7×, reduces mobile energy consumption
by 59.5% on average and up to 94.7%, and improves data-
center throughput by 1.5× on average and up to 6.7×.

Keywords mobile computing; cloud computing; deep neu-
ral networks; intelligent applications

1. Introduction
The way we interact with today’s mobile devices is rapidly
changing as these devices are increasingly personal and
knowledgeable. Intelligent Personal Assistants (IPAs), such
as Apple Siri, Google Now, and Microsoft Cortana, are in-
tegrated by default on mobile devices and are expected to
grow in popularity as wearables and smart home devices
continue to gain traction [1, 2]. The primary interface with
these intelligent mobile applications is using speech or im-
ages to navigate the device and ask questions. Demand for
this mode of interaction is expected to replace the traditional
text based inputs [3–5].

Processing speech and image inputs for IPA applications
requires accurate and highly sophisticated machine learn-
ing techniques, the most common of which are Deep Neural
Networks (DNNs). DNNs have become increasingly popular
as the core machine learning technique in these applications
due to their ability to achieve high accuracy for tasks such
as speech recognition, image classification and natural lan-
guage understanding. Many companies, including Google,
Microsoft, Facebook, and Baidu, are using DNNs as the ma-
chine learning component for numerous applications in their
production systems [6–8].

Prior work has shown that speech or image queries for
DNN-based intelligent applications require orders of magni-
tude more processing than text based inputs [9]. The com-
mon wisdom has been that traditional mobile devices can-
not support this large amount of computation with reason-
able latency and energy consumption. Thus, the status quo
approach used by web service providers for intelligent ap-
plications has been to host all the computation on high-end
cloud servers [10–13]. Queries generated from a user’s mo-
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Figure 1: Status quo, mobile-only and the Neurosurgeon approach.
Status quo approach performs all computation remotely in the cloud,
the mobile-only approach performs all computation locally on the mo-
bile device, and the Neurosurgeon approach partitions computation
between the cloud and mobile device.

bile device are sent to the cloud for processing, as shown
in Figure 1a. However, with this approach, large amounts
of data (e.g., images, video and audio) are uploaded to the
server via the wireless network, resulting in high latency and
energy costs.

While data transfer becomes the latency and energy bot-
tleneck, performance and energy efficiency of modern mo-
bile hardware have continued to improve through powerful
mobile SoC integration [14, 15]. Motivated by this observa-
tion, this work re-examines the computation breakdown for
intelligent applications between mobile and cloud. In partic-
ular, we investigate how computation can be pushed out of
the cloud and onto the mobile devices on the edge to execute
all or parts of these conventionally cloud-only applications.
Key questions we address in this work include:

1. How feasible it is to execute large-scale intelligent
workloads on today’s mobile platforms?

2. At what point is the cost of transferring speech and
image data over the wireless network too high to justify
cloud processing?

3. What role should the mobile edge play in provid-
ing processing support for intelligent applications requiring
heavy computation?

Based on our investigation using 8 DNN-based intelligent
applications spanning the domains of vision, speech, and
natural language, we discover that, for some applications,
due to the high data transfer overhead, locally executing on
the mobile device (Figure 1b) can be up to 11× faster than
the cloud-only approach (Figure 1a). Furthermore, we find
that instead of limiting the computation to be either executed
entirely in the cloud or entirely on the mobile, a fine-grained
layer-level partitioning strategy based on a DNN’s topology
and constituent layers can achieve far superior end-to-end la-
tency performance and mobile energy efficiency. By pushing
compute out of the cloud and onto the mobile devices, we
also improve datacenter throughput, allowing a given dat-
acenter to support many more user queries, and creating a
win-win situation for both the mobile and cloud systems.

Given the observation that ideal fine-grained DNN parti-
tion points depend on the layer compositions of the DNN,
the particular mobile platform used, the wireless network
configuration and the server load, we design a lightweight
dynamic scheduler, Neurosurgeon. Neurosurgeon is a
runtime system spanning cloud and mobile platforms that

automatically identifies the ideal partition points in DNNs
and orchestrates the distribution of computation between the
mobile device and the datacenter. As Figure 1c shows, Neu-
rosurgeon partitions the DNN computation and takes ad-
vantage of the processing power of both the mobile and the
cloud while reducing data transfer overhead. The detailed
contributions of this paper are as follows:

• In-depth examination of the status quo – We show
the latency and energy consumption of executing state-
of-the-art DNNs in the cloud and on the mobile device.
We observe that uploading via the wireless network is the
bottleneck of the status quo approach, and mobile execu-
tion often provides better latency and energy consump-
tion than the status quo approach. (Section 3)

• DNN compute and data size characteristics study –
We provide an in-depth layer-level characterization of
the compute and data size of 8 DNNs spanning across
computer vision, speech and natural language process-
ing. Our investigation reveals that DNN layers have sig-
nificantly different compute and data size characteristics
depending on their type and configurations. (Section 4)

• DNN computation partitioning across the cloud and
mobile edge – Based on the compute and data character-
ization of DNN layers, we show that partitioning DNN at
layer granularity offers significant performance benefits.
We then design a systematic approach to identify the op-
timal points to partition computation for reduced latency
and mobile energy consumption across a suite of appli-
cations. (Section 4)

• Neurosurgeon runtime system and layer performance
prediction models – We develop a set of models to pre-
dict the latency and power consumption of a DNN layer
based on its type and configuration, and create Neuro-
surgeon, a system to intelligently partition DNN com-
putation between the mobile and cloud. We demonstrate
that Neurosurgeon significantly improves end-to-end
latency, reduces mobile energy consumption, and im-
proves datacenter throughput. (Sections 5 and 6)

Our evaluation on a suite of 8 DNN applications shows
that using Neurosurgeon on average improves end-to-
end latency by 3.1×, reduces mobile energy consumption
by 59.5%, and improves datacenter throughput by 1.5×.

2. Background
In this section, we provide an overview of Deep Neural
Network (DNN) and describe how computer vision, speech,
and natural language processing applications leverage DNNs
as their core machine learning algorithm.

DNNs are organized in a directed graph where each node
is a processing element (a neuron) that applies a function to
its input and generates an output. Figure 2 depicts a 5 layer
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Figure 2: A 5-layer Deep Neural Network (DNN) classifies input image
into one of the pre-defined classes.

DNN for image classification where computation flows from
left to right. The edges of the graph are the connections be-
tween each neuron defining the flow of data. Multiple neu-
rons applying the same function to different parts of the in-
put define a layer. For a forward pass through a DNN, the
output of a layer is the input to the next layer. The depth
of a DNN is determined by the number of layers. Computer
Vision (CV) applications use DNNs to extract features from
an input image and classify the image into one of the pre-
defined classes. Automatic Speech Recognition (ASR) ap-
plications use DNNs to generate predictions for speech fea-
ture vectors, which will then be post-processed to produce
the most-likely text transcript. Natural Language Processing
(NLP) applications use DNNs to analyze and extract seman-
tic and syntactic information from word embedding vectors
generated from input text.

3. Cloud-only Processing: The Status Quo
Currently, the status quo approach used by cloud providers
for intelligent applications is to perform all DNN processing
in the cloud [10–13]. A large overhead of this approach is in
sending data over the wireless network. In this section, we
investigate the feasibility of executing large DNNs entirely
on a state-of-the-art mobile device, and compare with the
status quo.

3.1 Experimental setup
We use a real hardware platform, representative of today’s
state-of-the-art mobile devices, the Jetson TK1 mobile plat-
form developed by NVIDIA [16] and used in the Nexus
9 tablet [17]. The Jetson TK1 is equipped with one of
NVIDIA’s latest mobile SoC, Tegra K1: a quad-core ARM
A15 and a Kepler mobile GPU with a single streaming mul-
tiprocessor (Table 1).

Table 1: Mobile Platform Specifications

Hardware Specifications
System Tegra K1 SoC
CPU 4-Plus-1 quad-core ARM Cortex A15 CPU

Memory 2 GB DDR3L 933MHz
GPU NVIDIA Kepler with 192 CUDA Cores

Table 2: Server Platform Specifications

Hardware Specifications
System 4U Intel Dual CPU Chassis, 8×PCIe 3.0×16 slots
CPU 2× Intel Xeon E5-2620 V2, 6C, 2.10 GHz
HDD 1TB 2.5” HDD

Memory 16× 16GB DDR3 1866MHz ECC/Server Memory
GPU NVIDIA Tesla K40 M-Class 12 GB PCIe

Our server platform is equipped with an NVIDIA Tesla
K40 GPU, one of NVIDIA’s latest offering in server class
GPUs (Table 2).

We use Caffe [18], an actively developed open-source
deep learning library, for the mobile and server platform.
For the mobile CPU, we use OpenBLAS [19], a NEON-
vectorized matrix multiplication library and use the 4 cores
available. For both GPUs, we use cuDNN [20], an optimized
NVIDIA library that accelerates key layers in Caffe, and use
Caffe’s CUDA implementations for rest of the layers.

3.2 Examining the Mobile Edge
We investigate the capability of the mobile platform to ex-
ecute a traditionally cloud-only DNN workload. We use
AlexNet [21] as our application, a state-of-the-art Convo-
lutional Neural Network for image classification. Prior work
has noted that AlexNet is representative of today’s DNNs
deployed in server environments [22].

In Figure 3, we break down the latency of an AlexNet
query, a single inference on a 152KB image. For wireless
communication, we measure the bandwidth of 3G, LTE, and
Wi-Fi on several mobile devices using TestMyNet [23].
Communication Latency – Figure 3a shows the latency
to upload the input image via 3G, LTE, and Wi-Fi. The
slowest is 3G connection taking over 870ms. LTE and Wi-Fi
connection require 180ms and 95ms to upload, respectively,
showing that the network type is critical for achieving low
latency for the status quo approach.
Computation Latency – Figure 3b shows the computation
latency on mobile CPU, GPU and cloud GPU. The slowest
platform is the mobile CPU taking 382ms to process while
the mobile GPU and cloud GPU take 81ms and 6ms, respec-
tively. Note that the mobile CPU’s time to process the image
is still 2.3× faster than uploading input via 3G.
End-to-end Latency – Figure 3c shows the total latency re-
quired by the status quo and the mobile-only approach. An-
notated on top of each bar is the fraction of the end-to-end la-
tency spent on computation. The status quo approach spends
less than 6% of the time computing on the server and over
94% of the time transferring data. The mobile GPU achieves
a lower end-to-end latency than the status quo approach us-
ing LTE and 3G, while the status quo approach using LTE
and Wi-Fi performs better than mobile CPU execution.
Energy Consumption – We measure the energy consump-
tion of the mobile device using a Watts Up? meter [24] and
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Figure 3: Latency breakdown for AlexNet (image classification). The
cloud-only approach is often slower than mobile execution due to the
high data transfer overhead.
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Figure 4: Mobile energy breakdown for AlexNet (image classification).
Mobile device consumes more energy transferring data via LTE and
3G than computing locally on the GPU.

techniques described by Huang et al. [25]. Similar to the
trends shown in Figure 3a, Figure 4a shows that the com-
munication energy is heavily dependent on the type of wire-
less network used. In Figure 4b, the mobile device’s energy
consumption is higher on the CPU than the GPU (while the
GPU needs more power, the device is used for a shorter burst
thus it consumes less total energy). Figure 4c shows the to-
tal mobile energy consumption for the cloud-only approach
and mobile execution where the energy in the cloud-only ap-
proach is dominated by communication. The mobile GPU
consumes less energy than transferring input via LTE or 3G
for cloud processing, while cloud processing via Wi-Fi con-
sumes less energy than mobile execution.
Key Observations – 1) The data transfer latency is often
higher than mobile computation latency, especially on 3G
and LTE. 2) Cloud processing has a significant computa-
tional advantage over mobile processing, but it does not al-
ways translate to end-to-end latency/energy advantage due to
the dominating data transfer overhead. 3) Local mobile exe-
cution often leads to lower latency and energy consumption
than the cloud-only approach, while the cloud-only approach
achieves better performance if using fast Wi-Fi connection.

4. Fine-grained Computation Partitioning
Based on the findings in Section 3, the question arises as
to whether it is advantageous to partition DNN computation
between the mobile device and cloud. Based on the obser-
vation that DNN layers provide an abstraction suitable for
partitioning computation, we begin with an analysis of the

data and computation characteristics of state-of-the-art DNN
architectures at the layer granularity.

4.1 Layer Taxonomy
Before the layer-level analysis, it is important to understand
the various types of layers present in today’s DNNs.
Fully-connected Layer (fc) – All the neurons in a fully-
connected layer are exhaustively connected to all the neu-
rons in the previous layer. The layer computes the weighted
sum of the inputs using a set of learned weights.
Convolution & Local Layer (conv, local) – Convolution
and local layers convolve the image with a set of learned
filters to produce a set of feature maps. These layers mainly
differ in the dimensions of their input feature maps, the
number and size of their filters, and the stride with which
the filters are being applied.
Pooling Layer (pool) – Pooling layers apply a pre-defined
function (e.g., max or average) over regions of input feature
maps to group features together. These layers mainly differ
in the dimension of their input, size of the pooling region,
and the stride with which the pooling is applied.
Activation Layer – Activation layers apply a non-linear
function to each of its input data individually, producing the
same amount of data as output. Activation layers present in
the neural networks studied in this work include sigmoid
layer (sig), rectified-linear layer (relu), and hard Tanh
layer (htanh).

Other layers studied in this work include: normalization
layer (norm) normalizes features across spatially grouped
feature maps; softmax layer (softmax) produces a prob-
ability distribution over the number of possible classes for
classification; argmax layer (argmax) chooses the class
with the highest probability; and dropout layer (dropout)
randomly ignores neurons during training to avoid model
over-fitting and are passed through during prediction.

4.2 Characterizing Layers in AlexNet
We first investigate the data and computation characteristics
of each layer in AlexNet. These characteristics provide in-
sights to identify a better computation partitioning between
mobile and cloud at the layer level. In the remainder of this
and subsequent sections, we use the GPU in both mobile and
server platforms.
Per-layer Latency – The left bars (light-colored) in Figure 5
show the latency of each layer on the mobile platform, ar-
ranged from left to right in their sequential execution order.
The convolution (conv) and fully-connected layers (fc) are
the most time-consuming layers, representing over 90% of
the total execution time. Convolution layers in the middle
(conv3 and conv4) takes longer to execute than the early
convolution layers (conv1 and conv2). Larger number of
filters are applied by the convolution layers later in the DNN
to progressively extract more robust and representative fea-
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next layer) in AlexNet. Data size sharply increases then decreases while computation generally increases through the network’s execution.
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tures, increasing the amount of computation. On the other
hand, fully-connected layers are up to one magnitude slower
than the convolution layers in the network. The most time-
consuming layer is the layer fc6, a fully-connected layer
deep in the DNN, taking 45% of the total execution time.
Data Size Variations – The right bars (dark-colored) in
Figure 5 shows the size of each layer’s output data, which
is also the input to the next layer. The first three convolution
layers (conv1, conv2 and conv3) generate large amounts of
output data (shown as the largest dark bars) as they apply
hundreds of filters over their input feature maps to extract
interesting features. The data size stays constant through
the activation layers (relu1 - relu5). The pooling layers
sharply reduce the data size by up to 4.7× as they summarize
regions of neighboring features by taking the maximum.
The fully-connected layers deeper in the network (fc6 -
fc8) gradually reduce the data size until the softmax layer
(softmax) and argmax layer (argmax) at the end reduce the
data to be one classification label.
Key Observations – 1) Depending on its type and location in
the network, each layer has a different computation and data
profile. 2) The latency of convolution and pooling layers on
the mobile GPU are relatively small, while fully-connected
layers incur high latency. 3) Convolution and pooling lay-
ers are mostly at the front-end of the network, while fully-
connected layers are at the back-end. 4) With convolution
layers increasing data and then pooling layers reducing data,
the front-end layers altogether reduce the size of data gradu-
ally. Data size in the last few layers are smaller than the orig-
inal input. 5) The findings that data size is generally decreas-

ing at the front-end, and per-layer mobile latency is generally
higher at the back-end, indicates the unique opportunity for
computation partitioning in the middle of the DNN between
the mobile and cloud.

4.3 Layer-granularity Computation Partitioning
The analysis in Section 4.2 indicates that there exist interest-
ing points within a neural network to partition computation.
In this section, we explore partitioning AlexNet at each layer
between the mobile and cloud. In this section, we use Wi-Fi
as the wireless network configuration.

Each bar in Figure 6a represents the end-to-end latency
of AlexNet, partitioned after each layer. Similarly, each bar
in Figure 6b represents the mobile energy consumption of
Alexnet, partitioned after each layer. Partitioning computa-
tion after a specific layer means executing the DNN on the
mobile up to that layer, transferring the output of that layer
to the cloud via wireless network, and executing the remain-
ing layers in the cloud. The leftmost bar represents send-
ing the original input for cloud-only processing. As partition
point moves from left to right, more layers are executed on
the mobile device thus there is an increasingly larger mobile
processing component. The rightmost bar is the latency of
executing the entire DNN locally on the mobile device.
Partition for Latency – If partitioning at the front-end, the
data transfer dominates the end-to-end latency, which is con-
sistent with our observation in Section 4.2 that the data size
is the largest at the early stage of the DNN. Partitioning at the
back-end provides better performance since the application
can minimize the data transfer overhead, while taking ad-
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Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0× over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.
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Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.
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Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

621



+++++++++
+++

+++
+++

++++++++++++
+++

+++

+++++++++
++++++ +++

++++
+++

++
+++

+++
+++

CONV FC

POOL ACT
…

+++++++++
+++

+++
+++

++++++++++++
+++

+++

+++++++++
++++++ +++

++++
+++

++
+++

+++
+++

CONV FC

POOL ACT
…

1) Generate 
prediction models

Deployment Phase

Target Application

1) Extract layer 
configurations

Runtime Phase

4) Partitioned 
Execution

2) Predict layer 
performance

3) Evaluate 
partition points

Prediction
Model

Prediction
Model

Prediction
Model

Prediction
Model

Prediction
Model

Figure 10: Overview of Neurosurgeon. At deployment, Neurosurgeon generates prediction models for each layer type. During runtime, Neuro-
surgeon predicts each layer’s latency/energy cost based on the layer’s type and configuration, and selects the best partition point based on various
dynamic factors.

agnostic and only needs to be done once for a given set of
mobile and server platforms; per-application profiling is not
needed. This set of prediction models are stored on the mo-
bile device and later used to predict the latency and energy
cost of each layer (Section 5.1).
During Runtime – During the execution of an DNN-based
intelligent application on the mobile device, Neurosur-
geon dynamically decides the best partition point for the
DNN. As illustrated in Figure 10, the steps are as follows:
1) Neurosurgeon analyzes and extracts the DNN architec-
ture’s layer types and configurations; 2) the system uses the
stored layer performance prediction models to estimate the
latency and energy consumption for executing each layer on
the mobile and cloud; 3) with these predictions, combined
with the current wireless connection bandwidth and data-
center load level, Neurosurgeon selects the best partition
point, optimizing for best end-to-end latency or best mobile
energy consumption; 4) Neurosurgeon executes the DNN,
partitioning work between the mobile and cloud.

5.1 Performance Prediction Model
Neurosurgeon models the per-layer latency and the energy
consumption of arbitrary neural network architecture. This
approach allows Neurosurgeon to estimate the latency and
energy consumption of a DNN’s constituent layers without
executing the DNN.

We observe that for each layer type, there is a large la-
tency variation across layer configurations. Thus, to con-
struct the prediction model for each layer type, we vary the
configurable parameters of the layer and measure the latency
and power consumption for each configuration. Using these
profiles, we establish a regression model for each layer type
to predict the latency and power of the layer based on its con-
figuration. We describe each layer’s regression model vari-
ables later in this section. We use GFLOPS (Giga Floating
Point Operations per Second) as our performance metric.
Based on the layer type, we use either a logarithmic or linear
function as the regression function. The logarithmic-based
regression is used to model the performance plateau as the
computation requirement of the layer approaches the limit of
the available hardware resources.

Convolution, local and pooling layers’ configurable pa-
rameters include the input feature map dimension, number,
size and stride of the filters. The regression model for con-
volution layer is based on two variables: the number of fea-
tures in the input feature maps, and (filter size/stride)2×
(# of filters), which represents the amount of computa-
tion applied to each pixel in the input feature maps. For local
and pooling layers, we use the size of the input and output
feature maps as the regression model variables.

In a fully-connected layer, the input data is multiplied by
the learned weight matrix to generate the output vector. We
use the number of input neurons and number of output neu-
rons as the regression model variables. Softmax and argmax
layers are handled similarly.

Activation layers have fewer configurable parameters
compared to other layers because activation layers have a
one-to-one mapping between their input data and output. We
use the number of neurons as the regression model variable.
We apply the same approach to normalization layers.

As previously mentioned, it is a one-time profiling step
required for each mobile and server hardware platform to
generate a set of prediction models. The models enable Neu-
rosurgeon to estimate the latency and energy cost of each
layer based its configuration, which allows Neurosur-
geon to support future neural network architectures without
additional profiling overhead.

5.2 Dynamic DNN Partitioning
Utilizing the layer performance prediction models, Neuro-
surgeon dynamically selects the best DNN partition points,
as described in Algorithm 1. The algorithm has two-steps:
analysis of the target DNN and partition point selection.
Analysis of the Target DNN – Neurosurgeon analyzes
the target DNN’s constituent layers, and uses the prediction
models to estimate, for each layer, the latency on mobile and
cloud, and power consumption on the mobile. Specifically,
at lines 11 and 12 of Algorithm 1, Neurosurgeon extracts
each layer’s type and configuration (Li) and uses the regres-
sion models to predict the latency of executing layer Li on
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Table 4: Neurosurgeon’s partition point selections for best end-to-end latency. Green block indicates Neurosurgeon makes the optimal partition
choice and white block means a suboptimal partition point is picked. On average, Neurosurgeon achieves within 98.5% of the optimal performance.

Mobile Wireless
network

Benchmarks
IMC VGG FACE DIG ASR POS NER CHK

CPU
Wi-Fi input input input input input fc3
LTE input input input argmax input fc3
3G argmax input input argmax input fc3

GPU
Wi-Fi pool5 input input argmax input fc3
LTE argmax argmax input argmax input fc3
3G argmax argmax argmax argmax input fc3
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Figure 11: Latency speedup achieved by Neurosurgeon normalized to status quo approach (executing entire DNN in the cloud). Results
for three wireless networks (Wi-Fi, LTE and 3G) and mobile CPU and GPU are shown here. Neurosurgeon improves the end-to-end DNN
inference latency by 3.1× on average (geometric mean) and up to 40.7×.

mobile (TMi) and cloud (TCi), while taking into consid-
eration of current datacenter load level (K). Line 13 esti-
mates the power of executing layer Li on the mobile device
(PMi) and line 14 calculates the wireless data transfer la-
tency (TUi) based on the latest wireless network bandwidth.
Partition Point Selection – Neurosurgeon then selects the
best partition point. The candidate points are after each layer.
Lines 16 and 18 evaluate the performance when partitioning
at each candidate point and select the point for either best
end-to-end latency or best mobile energy consumption. Be-
cause of the simplicity of the regression models, this evalu-
ation is lightweight and efficient.
Algorithm 1 Neurosurgeon DNN partitioning algorithm
1: Input:
2: N : number of layers in the DNN
3: {Li|i = 1 · · ·N}: layers in the DNN
4: {Di|i = 1 · · ·N}: data size at each layer
5: f, g(Li): regression models predicting the latency and power of exe-

cuting Li

6: K: current datacenter load level
7: B: current wireless network uplink bandwidth
8: PU : wireless network uplink power consumption
9: procedure PARTITIONDECISION

10: for each i in 1 · · ·N do
11: TMi ← fmobile(Li)
12: TCi ← fcloud(Li,K)
13: PMi ← gmobile(Li)
14: TUi ← Di/B

15: if OptTarget == latency then

16: return argmin
j=1···N

(
j∑

i=1
TMi +

N∑
k=j+1

TCk + TUj)

17: else if OptTarget == energy then

18: return argmin
j=1···N

(
j∑

i=1
TMi × PMi + TUj × PU)

5.3 Partitioned Execution
We prototype Neurosurgeon by creating modified in-
stances of Caffe [18] to serve as our mobile-side (NSmobile)
and server-side (NSserver) infrastructures. Through these
two variations of Caffe, we implement our client-server in-
terface using Thrift [33], an open source flexible RPC inter-
face for inter-process communication. To allow for flexibil-
ity in the dynamic selection of partition points, both NSmo-
bile and NSserver host complete DNN models, and par-
tition points are enforced by NSmobile and NSserver run-
time. Given a partition decision by NSmobile, execution
begins on the mobile device and cascades through the lay-
ers of the DNN leading up to that partition point. Upon
completion of that layer, NSmobile sends the output of that
layer from the mobile device to NSserver residing on the
server side. NSserver then executes the remaining DNN
layers. Upon the completion of the DNN execution, the fi-
nal result is sent back to NSmobile on the mobile device
from NSserver. Note that there is exactly one partition
point within the DNN for which information is sent from
the mobile device to the cloud.

6. Evaluation
We evaluate Neurosurgeon using 8 DNNs (Table 3) as
our benchmarks across Wi-Fi, LTE and 3G wireless con-
nections with both CPU-only and GPU mobile platforms.
We demonstrate Neurosurgeon achieves significant end-to-
end latency and mobile energy improvements over the sta-
tus quo cloud-only approach (Sections 6.1 and 6.2). We then
compare Neurosurgeon against MAUI [34], a well-known
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Table 5: Neurosurgeon partition point selections for best mobile energy consumption. Green block indicates Neurosurgeon makes the optimal
partition choice and white block means a suboptimal partition point is picked. On average, Neurosurgeon achieves a mobile energy reduction within
98.8% of the optimal reduction.

Mobile Wireless
network

Benchmarks
IMC VGG FACE DIG ASR POS NER CHK

CPU
Wi-Fi input input input input input fc3
LTE input input input input input fc3
3G input input input argmax input fc3

GPU
Wi-Fi input input input argmax input fc3
LTE pool5 input input argmax input fc3
3G argmax argmax input argmax input fc3
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Figure 12: Mobile energy consumption achieved by Neurosurgeon normalized to status quo approach (executing entire DNN in the cloud).
Results for three wireless networks (Wi-Fi, LTE and 3G) and mobile CPU and GPU are shown here. Neurosurgeon reduces the mobile energy
consumption by 59.5% on average (geometric mean) and up to 94.7%.

computation offloading framework (Section 6.3). We also
evaluate Neurosurgeon’s robustness to variations in wire-
less network connections (Section 6.4) and server load (Sec-
tion 6.5), demonstrating the need for such a dynamic run-
time system. Finally, we evaluate the datacenter throughput
improvement Neurosurgeon achieves by pushing compute
out of the cloud to the mobile device (Section 6.6).

6.1 Latency Improvement

Partition Point Selection – Table 4 summarizes the parti-
tion points selected by Neurosurgeon optimizing for la-
tency across the 48 configurations (i.e., 8 benchmarks, 3
wireless network types, mobile CPU and GPU). The green
cells indicate when Neurosurgeon selects the optimal par-
tition point and achieves the best speedup while the white
cells indicate Neurosurgeon selects a suboptimal point.
Neurosurgeon selects the best partition point for 44 out
of the 48 configurations. The mispredictions occur because
the partition points and its associated performance are very
close to one another and thus a small difference in Neuro-
surgeon’s latency prediction shifts the selection. Across all
benchmarks and configurations, Neurosurgeon achieves la-
tency speedup within 98.5% of optimal speedup.
Latency Improvement – Figure 11 shows Neurosurgeon’s
latency improvement over the status quo approach, across
the 8 benchmarks on Wi-Fi, LTE, and 3G. Figure 11a shows
the latency improvement when applying Neurosurgeon to
a mobile platform equipped with a CPU, and Figure 11b
shows that of a mobile platform with a GPU. For CV appli-
cations, Neurosurgeon identifies the best partition points
for 20 out of 24 cases and achieves significant latency

speedups, especially when the mobile GPU is available.
For the NLP applications, Neurosurgeon achieves signif-
icant latency speedups even when Wi-Fi is available. For
ASR, Neurosurgeon successfully identifies that it is best to
execute the DNN entirely on the server and, therefore Neu-
rosurgeon performs similar to the status quo for that par-
ticular benchmark. Across all benchmarks and configura-
tions, Neurosurgeon achieves a latency speedup of 3.1×
on average and up to 40.7× over the status quo approach.

6.2 Energy Improvement

Partition Point Selection – Table 5 summarizes the par-
tition points identified by Neurosurgeon for best mo-
bile energy. Neurosurgeon selects the best partition point
for 44 out of the 48 configurations. For the suboptimal
choices, Neurosurgeon consumes 24.2% less energy on
average than the status quo approach.
Energy Improvement – Figure 12 shows the mobile en-
ergy consumption achieved by Neurosurgeon, normalized
to the status quo approach. Figure 12a and 12b present re-
sults for CPU-only mobile platform and GPU-equipped mo-
bile platform, respectively. When optimizing for best energy
consumption, Neurosurgeon achieves on average a 59.5%
reduction in mobile energy and up to 94.7% reduction over
the status quo. Similar to the improvement for latency, the
energy reduction is also higher for most benchmarks when
the mobile platform is equipped with a GPU.

6.3 Comparing Neurosurgeon to MAUI
In this section, we compare Neurosurgeon to MAUI [34], a
general offloading framework. Note that MAUI is control-
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Figure 13: Latency speedup achieved by Neurosurgeon vs. MAUI [34].
For MAUI, we assume the optimal programmer annotation that
achieves minimal program state transfer. Neurosurgeon outperforms
MAUI by up to 32× and 1.9× on average.

centric, reasoning and making decisions about regions of
code (functions), whereas Neurosurgeon is data-centric,
making partition decisions based on the structure of the
data topology that can differ even if the same code region
(function) is called.

Figure 13 presents the latency speedup achieved by Neu-
rosurgeon normalized to MAUI when executing the 8
DNN benchmarks, averaged across three wireless network
types. Figure 13a presents the result when applying MAUI
and Neurosurgeon on a CPU-only mobile platform and
Figure 13b presents the result on a mobile platform equipped
with a GPU. In this experiment, we assume that for MAUI,
programmers have optimally annotated the minimal program
states that need to be transferred.

Figure 13 shows that Neurosurgeon significantly out-
performs MAUI on the computer vision applications. For the
NLP applications, both Neurosurgeon and MAUI correctly
decide that local computation on the mobile device is op-
timal. However, MAUI makes incorrect offloading choices
for more complicated scenarios (e.g., VGG, FACE, DIG and
ASR). This is because MAUI relies on past invocation of a
certain DNN layer type to predict the latency and data size of
the future invocations of that layer type, leading to mispre-
dictions. This control-centric prediction mechanism is not
suitable for DNN layers because the latency and data size
of layers of the same type can be drastically different within
one DNN, and Neurosurgeon’s DNN analysis step and pre-
diction model correctly captures this variation. For instance,
in VGG, the input data size for the first and second convolu-
tion layers are significantly different: 0.57MB for conv1.1,
and 12.25MB for conv1.2. For the mobile CPU and LTE,
MAUI decides to offload the DNN before conv1.2 due to
its misprediction, uploading large amount of data and re-
sulting in a 20.5× slowdown over the status quo approach.
Meanwhile, Neurosurgeon successfully identifies that for
this case it is best to execute the DNN entirely in the cloud,
and thus achieves similar performance as the status quo and
a 20.5× speedup over MAUI.

0
1
2
3
4
5

M
bp

s

LTE bandwidth

Time
0.0

0.5

1.0

1.5

2.0

L
at

en
cy

(s
) partitioned local partitioned remote

Status quo Neurosurgeon

Figure 14: The top graph shows bandwidth variance using a LTE net-
work. The bottom graph shows the latency of AlexNet (IMC) of the sta-
tus quo and Neurosurgeon. Neurosurgeon’s decisions are annotated
on the bottom graph. Neurosurgeon provides consistent latency by ad-
justing its partitioned execution based on the available bandwidth.
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Figure 15: Neurosurgeon adjusts its partitioned execution as the result
of varying datacenter load.

6.4 Network Variation
In this section, we evaluate Neurosurgeon’s resilience to
real-world measured wireless network variations. In Fig-
ure 14, the top graph shows measured wireless bandwidth
of T-Mobile LTE network over a period of time. The bot-
tom graph shows the end-to-end latency of the status quo
approach and Neurosurgeon executing AlexNet (IMC) on
the mobile CPU platform. Annotated on the bottom graph
is Neurosurgeon’s dynamic execution choice, categorized
as either local, remote or partitioned. The status quo ap-
proach is highly susceptible to network variations and conse-
quently the application suffers significant latency increases
during the low bandwidth phase. Conversely, Neurosur-
geon successfully mitigates the effects of large variations
and provides consistent low latency by shifting partition
choice to adjust the amount of data transfer based on the
available bandwidth.

6.5 Server Load Variation
In this section, we evaluate how Neurosurgeon makes dy-
namic decision as the server load varies. Datacenters typi-
cally experience diurnal load patterns and high server utiliza-
tion leads to increased service time for DNN queries. Neu-
rosurgeon determines the best partition point based on the
current server load level obtained by periodically pinging
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Figure 16: Datacenter throughput improvement achieved by Neuro-
surgeon over the status quo approach. Higher throughput improve-
ment is achieved by Neurosurgeon for cellular networks (LTE and 3G)
and as more mobile devices are equipped with GPUs.

the server during idle period, and thus avoids long latency
caused by high user demand and the resulting high load.

Figure 15 presents the end-to-end latency of AlexNet
(IMC) achieved by the status quo approach and Neuro-
surgeon as the server load increases. The mobile device
is equipped with a CPU and transfers data via Wi-Fi. As
shown in the figure, the status quo approach does not dy-
namically adapt to varying server load and thus suffers from
significant performance degradation when the server load is
high. The end-to-end latency of the status quo approach in-
creases from 105ms to 753ms as the server approaches its
peak load level. On the other hand, by taking server load
into consideration, Neurosurgeon dynamically adapts the
partition point. In Figure 15, two vertical dashed lines repre-
sent the points where Neurosurgeon changes its selection:
from complete cloud execution at low load, to partitioning
the DNN between mobile and cloud at medium load, and
eventually completely onloading to mobile at peak load. Re-
gardless of the server load, Neurosurgeon keeps the end-to-
end latency of executing image classification below 380ms.
By considering server load and its impact on the server per-
formance, Neurosurgeon consistently delivers the best la-
tency regardless of the variation in server load.

6.6 Datacenter Throughput Improvement
Neurosurgeon onloads part or all of the computation from
the cloud to mobile devices to improve end-to-end latency
and reduce mobile energy consumption. This new compute
paradigm reduces the computation required on the datacen-
ter, leading to shorter query service time and higher query
throughput. In this section, we evaluate Neurosurgeon’s ef-
fectiveness in this aspect. We use BigHouse [38] to com-
pare the achieved datacenter throughput between status quo
and Neurosurgeon. The incoming DNN queries are com-
posed evenly of the 8 DNNs in the benchmark suite. We use
the measured mean service time of DNN queries combined
with Google web search query distribution for the query
inter-arrival rate.

Figure 16 presents the datacenter throughput improve-
ment achieved by Neurosurgeon, normalized to the base-
line status quo approach of executing the entire computa-
tion on the server. Each cluster presents results for a given
wireless network type. Within each cluster, the first bar rep-
resents the status quo cloud-only approach, while the other
four bars represent Neurosurgeon with different composi-
tions of the mobile hardware. For example, “30% Mobile
GPU users” indicates 30% of the incoming requests are from
mobile devices equipped with a GPU while the remaining
70% are from devices equipped only with a CPU.

When the mobile clients are connected to the server via
fast Wi-Fi network, Neurosurgeon achieves on average
1.04× throughput improvement. As the wireless connec-
tion changes to LTE and 3G, the throughput improvement
becomes more significant: 1.43× for LTE and 2.36× for
3G. Neurosurgeon adapts its partition choice and pushes
larger portions of the DNN computation to the mobile de-
vices as the wireless connection quality becomes less ideal.
Therefore the average request query service time is reduced
and a higher throughput is achieved in the datacenter. We
also observe that as the percentage of mobile devices with
GPU increases, Neurosurgeon increases the computation
onloading from the cloud to mobile, leading to higher data-
center throughput improvement.

7. Related Work
Previous research efforts focus on offloading computation
from the mobile to cloud. In Table 6, we compare Neuro-
surgeon with the most relevant techniques on properties in-
cluding whether there is heavy data transfer overhead, data-
centric or control-centric partitioning, low run-time over-
head, whether application-specific profiling is required, and
whether programmer’s annotation is needed.

In addition to these key differences, computation parti-
tion frameworks have to make predictions as to when to of-
fload computation and the correctness of the prediction dic-
tates the final performance improvements for the applica-
tion. COMET [35] offloads a thread when its execution time
exceeds a pre-defined threshold, ignoring any other infor-
mation (amount of data to transfer, wireless network avail-
able, etc.). Odessa [36] makes computation partition deci-
sions only considering the execution time and data require-
ments of part of the function, without taking the entire appli-
cation into consideration. CloneCloud [37] makes the same
offloading decisions for all invocations of the same function.
MAUI’s [34] offloading decision mechanism is better in that
it makes predictions for each function invocation separately
and considers the entire application when choosing which
function to offload. However, MAUI is not applicable for
the computation partition performed by Neurosurgeon for
a number of reasons: 1) MAUI requires a profiling step for
each individual application, whereas predictions are required
to perform DNN partitioning. Neurosurgeon makes deci-
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Table 6: Comparing Neurosurgeon to popular computation offloading/partition frameworks

MAUI [34] Comet [35] Odessa [36] CloneCloud [37] Neurosurgeon
No need to transfer program state 3 3
Data-centric compute partitioning 3
Low/no runtime overhead 3 3 3 3
Requires no application-specific profiling 3 3
No programmer annotation needed 3 3 3 3
Server load sensitive 3 3

sions based on the DNN topology without any runtime pro-
filing. 2) MAUI is control-centric, making decisions about
regions of code (functions), whereas Neurosurgeon makes
partition decisions based on the structure of the data topol-
ogy that can differ even if the same code region (function) is
executed. Layers of a given type (even if mapped to the same
function) within one DNN can have significantly different
compute and data characteristics. 3) Neurosurgeon trans-
fers only the data that is being processed in contrast to trans-
ferring all program state. 4) MAUI requires the programmer
to annotate their programs to identify which methods are
“offload-able”.

In addition to prior work investigating the utilization and
efficiency of datacenter systems [39–52], there has been
growing interest in building large scale datacenter systems
for Deep Neural Network workloads. Various accelerators,
such as GPUs, ASICs, and FPGAs, have been proposed for
datacenters to better handle DNN computation [9, 53–55].
There has also been effort in designing compact DNNs suit-
able for the mobile edge. Microsoft and Google explore
small-scale DNNs for speech recognition on mobile plat-
forms [56, 57]. MCDNN [58] proposes generating alterna-
tive DNN models to trade-off accuracy for performance/en-
ergy and choosing to execute either in the cloud or on the
mobile. This work investigates intelligent collaboration be-
tween the mobile device and cloud for executing tradition-
ally cloud-only large-scale DNNs for reduced latency and
energy consumption without sacrificing the DNNs’ high pre-
diction accuracy.

8. Conclusion
As an essential component of today’s intelligent applica-
tions, Deep Neural Networks have been traditionally exe-
cuted in the cloud. In this work, we examine the efficacy
of this status quo approach of cloud-only processing and
show that it is not always optimal to transfer the input data
to the server and remotely execute the DNN. We inves-
tigate the compute and data characteristics of 8 DNN ar-
chitectures spanning computer vision, speech, and natural
language processing applications and show the trade-off of
partitioning computation at different points within the neu-
ral network. With these insights, we develop Neurosur-
geon, a system that can automatically partition DNN be-
tween the mobile device and cloud at the granularity of neu-
ral network layers. Neurosurgeon adapts to various DNN
architectures, hardware platforms, wireless connections, and
server load levels, and chooses the partition point for best la-

tency and best mobile energy consumption. Across 8 bench-
marks, when compared to cloud-only processing, Neuro-
surgeon achieves on average 3.1× and up to 40.7× la-
tency speedup, reduces mobile energy consumption by on
average 59.5% and up to 94.7%, and improves datacenter
throughput by on average 1.5× and up to 6.7×.
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